SlideShare a Scribd company logo
1 of 18
Download to read offline
Feasible Combinatorial Matrix Theory
Ariel G. Fern´andez, Michael Soltys.
fernanag@mcmaster.ca, soltys@mcmaster.ca
Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada
Outline
Introduction
KMM connects max matching with min vertex core
Language to Formalize Min-Max Reasoning
Main Results
LA with ΣB
1 -Ind. proves KMM
LA Equivalence: K¨onig, Menger, Hall, Dilworth
Related Theorems
Menger’s Theorem, Hall’s Theorem, and Dilworh’s Theorem
Future Work
1/12
KMM connects max matching with min vertex core
1
2
3
4
5
1’
2’
3’
4’
V1 V2
2/12
KMM connects max matching with min vertex core
1
2
3
4
5
1’
2’
3’
4’
V1 V2
M is a Matching denoted by snaked lines.
C is a Vertex cover denoted by square nodes.
Here M is a Maximum Matching and V is a
Minimum Vertex Cover.
So by K¨onig’s Mini-Max Theorem, |M| = |C|.
2/12
Language to Formalize Min-Max Reasoning
LA is
(Developed by Cook and Soltys.) Part of Cook’s program of
Reverse Mathematics.
Three sorts:
indices
ring elements
matrices
LA formalize linear algebra (Matrix Algebra).
LA over Z (though all matrices are 0-1 matrices.)
Since we want to count the number of 1s in A by ΣA.
3/12
LA with ΣB
1 -Induction
LA (i.e., LA with ΣB
0 -Induction), proves all the ring properties of
matrices (eg.,(AB)C = A(BC)), and LA over Z translates into
TC0
-Frege ([Cook-Soltys’04]).
Bounded Matrix Quantifiers: We let
(∃A ≤ n)α stands for (∃A)[|A| ≤ n ∧ α], and
(∀A ≤ n)α stands for (∀A)[|A| ≤ n → α].
LA with ΣB
1 -Induction correspond to polytime reasoning and proves
standard properties of the determinant, and translate into extended
Frege.
4/12
Main Results
Theorem 1:
LA with ΣB
1 -Induction KMM.
Theorem 2:
LA proves the equivalence of fundamental theorems:
K¨onig Mini-Max
Menger’s Connectivity
Hall’s System of Distinct Representatives
Dilworth’s Decomposition
5/12
LA with ΣB
1 -Ind. proves KMM
Diagonal Property
∗
∗
0
...
00
0
0 . . .1
Either Aii = 1 or (∀j ≥ i)[Aij = 0 ∧ Aji = 0].
Claim Given any matrix A, ∃LA proves that there exist permutation
matrices P, Q such that PAQ has the diagonal property.
6/12
LA Equivalence: K¨onig, Menger, Hall, Dilworth
Theorem :
LA proves the equivalence of fundamental theorems:
K¨onig Mini-Max
Menger’s Connectivity
Hall’s System of Distinct Representatives
Dilworth’s Decomposition
7/12
Menger’s Connectivity Theorem – Example
y
a d
ex b
c f
x y
Menger’s Connectivity Theorem – Example
y
a d
ex b
c f
x y
8/12
Menger’s Connectivity Theorem – Example
y
a d
ex b
c f
x y
8/12
Menger’s Connectivity Theorem – Example
y
a d
ex b
c f
x y
8/12
Menger’s Connectivity Theorem – Example
y
a d
ex b
c f
x y
8/12
Hall’s SDR Theorem - Example
Let X = {1, 2, 3, 4, 5} be the 5-set of integers.
Let S = {S1, S2, S3, S4} be a family of X. For instance,
S1 = {2, 5}, S2 = {2, 5}, S3 = {1, 2, 3, 4}, S4 = {1, 2, 5}.
Then D := (2, 5, 3, 1) is an SDR for (S1, S2, S3, S4).
Now, if we replace S4 by S4 = {2, 5}, then the subsets no
longer have an SDR.
For S1 ∪ S2 ∪ S4 is a 2-set, and three elements are required to
represent S1, S2, S4
9/12
Dilworth’s Decomposition Theorem - Example
{}
{1} {2} {3}
{1, 2} {1, 3} {2, 3}
{1, 2, 3}
Let P = (⊂, 2X
), i.e., all subsets of
X with |X| = n with set inclusion,
x < y ⇐⇒ x ⊂ y.
(A) Suppose that the largest
chain in P has size . Then P can
be partitioned into antichains.
We have 4-antichains [{}] ,
[{1}, {2}, {3}] , [{1, 2}, {1, 3}, {2, 3}] ,
and [{1, 2, 3}] .
(B) Suppose that the largest
antichain in P has size .
Then P can be partitioned into
disjoint chains. We have
[{} ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3}] ,
[{2} ⊂ {2, 3}] , and [{3} ⊂ {1, 3}].
10/12
Examples of LA formalization
For example, concepts necessary to state KMM in LLA:
Cover(A, α) :=
∀i, j ≤ r(A)(A(i, j) = 1 → α(1, i) = 1 ∨ α(2, j) = 1)
Select(A, β) :=
∀i, j ≤ r(A)((β(i, j) = 1 → A(i, j) = 1)
∧
∀k ≤ r(A)(β(i, j) = 1 → β(i, k) = 0 ∧ β(k, j) = 0))
11/12
Future Work
Can LA-Theory prove KMM?
What is the relationship between KMM and PHP?
(Eg. LA ∪ PHP KMM?)
Can LA ∪ KMM prove Hard Matrix Identities?
We would like to know whether LA ∪ KMM can prove hard
matrix identities, such as AB = I → BA = I. Of course, we
already know from [TZ11] that (non-uniform) NC2
-Frege is
sufficient to prove AB = I → BA = I, and from [Sol06] we
know that ∃LA can prove them also.
What about ∞-KMM?
12/12

More Related Content

What's hot

Ireducible core and equal remaining obligations rule for mcst games
Ireducible core and equal remaining obligations rule for mcst gamesIreducible core and equal remaining obligations rule for mcst games
Ireducible core and equal remaining obligations rule for mcst gamesvinnief
 
Mit2 092 f09_lec23
Mit2 092 f09_lec23Mit2 092 f09_lec23
Mit2 092 f09_lec23Rahman Hakim
 
7f44bdd880a385b7c1338293ea4183f930ea
7f44bdd880a385b7c1338293ea4183f930ea7f44bdd880a385b7c1338293ea4183f930ea
7f44bdd880a385b7c1338293ea4183f930eaAlvaro
 
Mit2 092 f09_lec19
Mit2 092 f09_lec19Mit2 092 f09_lec19
Mit2 092 f09_lec19Rahman Hakim
 
The Complexity Of Primality Testing
The Complexity Of Primality TestingThe Complexity Of Primality Testing
The Complexity Of Primality TestingMohammad Elsheikh
 
Mit2 092 f09_lec21
Mit2 092 f09_lec21Mit2 092 f09_lec21
Mit2 092 f09_lec21Rahman Hakim
 
Prime and Composite Numbers
Prime and Composite NumbersPrime and Composite Numbers
Prime and Composite NumbersSonny Soriano
 
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisEuclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisAmrinder Arora
 
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length inventionjournals
 
Introduction to the AKS Primality Test
Introduction to the AKS Primality TestIntroduction to the AKS Primality Test
Introduction to the AKS Primality TestPranshu Bhatnagar
 
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENT
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENTA NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENT
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENTijcisjournal
 
Fuzzy inventory model with shortages in man power planning
Fuzzy inventory model with shortages in man power planningFuzzy inventory model with shortages in man power planning
Fuzzy inventory model with shortages in man power planningAlexander Decker
 
The complexity of promise problems with applications to public-key cryptography
The complexity of promise problems with applications to public-key cryptographyThe complexity of promise problems with applications to public-key cryptography
The complexity of promise problems with applications to public-key cryptographyXequeMateShannon
 
Common fixed point theorems of integral type in menger pm spaces
Common fixed point theorems of integral type in menger pm spacesCommon fixed point theorems of integral type in menger pm spaces
Common fixed point theorems of integral type in menger pm spacesAlexander Decker
 
02 The Math for Analysis of Algorithms
02 The Math for Analysis of Algorithms02 The Math for Analysis of Algorithms
02 The Math for Analysis of AlgorithmsAndres Mendez-Vazquez
 
Bt0080 fundamentals of algorithms2
Bt0080 fundamentals of algorithms2Bt0080 fundamentals of algorithms2
Bt0080 fundamentals of algorithms2Techglyphs
 

What's hot (20)

Unit 3
Unit 3Unit 3
Unit 3
 
Ireducible core and equal remaining obligations rule for mcst games
Ireducible core and equal remaining obligations rule for mcst gamesIreducible core and equal remaining obligations rule for mcst games
Ireducible core and equal remaining obligations rule for mcst games
 
Mit2 092 f09_lec23
Mit2 092 f09_lec23Mit2 092 f09_lec23
Mit2 092 f09_lec23
 
7f44bdd880a385b7c1338293ea4183f930ea
7f44bdd880a385b7c1338293ea4183f930ea7f44bdd880a385b7c1338293ea4183f930ea
7f44bdd880a385b7c1338293ea4183f930ea
 
Mit2 092 f09_lec19
Mit2 092 f09_lec19Mit2 092 f09_lec19
Mit2 092 f09_lec19
 
The Complexity Of Primality Testing
The Complexity Of Primality TestingThe Complexity Of Primality Testing
The Complexity Of Primality Testing
 
Primality
PrimalityPrimality
Primality
 
Mit2 092 f09_lec21
Mit2 092 f09_lec21Mit2 092 f09_lec21
Mit2 092 f09_lec21
 
Prime and Composite Numbers
Prime and Composite NumbersPrime and Composite Numbers
Prime and Composite Numbers
 
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisEuclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
 
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length
The Minimum Hamming Distances of the Irreducible Cyclic Codes of Length
 
Assignment 2 daa
Assignment 2 daaAssignment 2 daa
Assignment 2 daa
 
Introduction to the AKS Primality Test
Introduction to the AKS Primality TestIntroduction to the AKS Primality Test
Introduction to the AKS Primality Test
 
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENT
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENTA NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENT
A NEW ATTACK ON RSA WITH A COMPOSED DECRYPTION EXPONENT
 
Fuzzy inventory model with shortages in man power planning
Fuzzy inventory model with shortages in man power planningFuzzy inventory model with shortages in man power planning
Fuzzy inventory model with shortages in man power planning
 
The complexity of promise problems with applications to public-key cryptography
The complexity of promise problems with applications to public-key cryptographyThe complexity of promise problems with applications to public-key cryptography
The complexity of promise problems with applications to public-key cryptography
 
Joint3DShapeMatching
Joint3DShapeMatchingJoint3DShapeMatching
Joint3DShapeMatching
 
Common fixed point theorems of integral type in menger pm spaces
Common fixed point theorems of integral type in menger pm spacesCommon fixed point theorems of integral type in menger pm spaces
Common fixed point theorems of integral type in menger pm spaces
 
02 The Math for Analysis of Algorithms
02 The Math for Analysis of Algorithms02 The Math for Analysis of Algorithms
02 The Math for Analysis of Algorithms
 
Bt0080 fundamentals of algorithms2
Bt0080 fundamentals of algorithms2Bt0080 fundamentals of algorithms2
Bt0080 fundamentals of algorithms2
 

Viewers also liked

The proof theoretic strength of the Steinitz exchange theorem - EACA 2006
The proof theoretic strength of the Steinitz exchange theorem - EACA 2006The proof theoretic strength of the Steinitz exchange theorem - EACA 2006
The proof theoretic strength of the Steinitz exchange theorem - EACA 2006Michael Soltys
 
The Proof Complexity of Linear Algebra - LICS 2002
The Proof Complexity of Linear Algebra - LICS 2002The Proof Complexity of Linear Algebra - LICS 2002
The Proof Complexity of Linear Algebra - LICS 2002Michael Soltys
 
Feasible Combinatorial Matrix Theory - MFCS2013
Feasible Combinatorial Matrix Theory - MFCS2013Feasible Combinatorial Matrix Theory - MFCS2013
Feasible Combinatorial Matrix Theory - MFCS2013Michael Soltys
 
Perceptions of Foundational Knowledge by CS students - WCCCE 2012
Perceptions of Foundational Knowledge by CS students - WCCCE 2012Perceptions of Foundational Knowledge by CS students - WCCCE 2012
Perceptions of Foundational Knowledge by CS students - WCCCE 2012Michael Soltys
 
A formal framework for Stringology
A formal framework for StringologyA formal framework for Stringology
A formal framework for StringologyMichael Soltys
 
Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Michael Soltys
 
Unambiguous functions in logarithmic space - CiE 2009
Unambiguous functions in logarithmic space - CiE 2009Unambiguous functions in logarithmic space - CiE 2009
Unambiguous functions in logarithmic space - CiE 2009Michael Soltys
 
Games on Posets - CiE 2008
Games on Posets - CiE 2008Games on Posets - CiE 2008
Games on Posets - CiE 2008Michael Soltys
 
La, permutations, and the hajós calculus - ICALP 2004
La, permutations, and the hajós calculus - ICALP 2004La, permutations, and the hajós calculus - ICALP 2004
La, permutations, and the hajós calculus - ICALP 2004Michael Soltys
 
Fair ranking in competitive bidding procurement: a case analysis
Fair ranking in competitive bidding procurement: a case analysisFair ranking in competitive bidding procurement: a case analysis
Fair ranking in competitive bidding procurement: a case analysisMichael Soltys
 
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006Michael Soltys
 
Forced repetitions over alphabet lists
Forced repetitions over alphabet listsForced repetitions over alphabet lists
Forced repetitions over alphabet listsMichael Soltys
 
How Safe is your Data?
How Safe is your Data?How Safe is your Data?
How Safe is your Data?Michael Soltys
 
Circuit Complexity of Shuffle - IWOCA 2013
Circuit Complexity of Shuffle - IWOCA 2013Circuit Complexity of Shuffle - IWOCA 2013
Circuit Complexity of Shuffle - IWOCA 2013Michael Soltys
 
An algorithmic view of Computer Science
An algorithmic view of Computer ScienceAn algorithmic view of Computer Science
An algorithmic view of Computer ScienceMichael Soltys
 
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005Feasible proofs of matrix identities with csanky's algorithm - CSL 2005
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005Michael Soltys
 

Viewers also liked (18)

The proof theoretic strength of the Steinitz exchange theorem - EACA 2006
The proof theoretic strength of the Steinitz exchange theorem - EACA 2006The proof theoretic strength of the Steinitz exchange theorem - EACA 2006
The proof theoretic strength of the Steinitz exchange theorem - EACA 2006
 
Intro to Cryptography
Intro to CryptographyIntro to Cryptography
Intro to Cryptography
 
Algorithms on Strings
Algorithms on StringsAlgorithms on Strings
Algorithms on Strings
 
The Proof Complexity of Linear Algebra - LICS 2002
The Proof Complexity of Linear Algebra - LICS 2002The Proof Complexity of Linear Algebra - LICS 2002
The Proof Complexity of Linear Algebra - LICS 2002
 
Feasible Combinatorial Matrix Theory - MFCS2013
Feasible Combinatorial Matrix Theory - MFCS2013Feasible Combinatorial Matrix Theory - MFCS2013
Feasible Combinatorial Matrix Theory - MFCS2013
 
Perceptions of Foundational Knowledge by CS students - WCCCE 2012
Perceptions of Foundational Knowledge by CS students - WCCCE 2012Perceptions of Foundational Knowledge by CS students - WCCCE 2012
Perceptions of Foundational Knowledge by CS students - WCCCE 2012
 
A formal framework for Stringology
A formal framework for StringologyA formal framework for Stringology
A formal framework for Stringology
 
Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System -
 
Unambiguous functions in logarithmic space - CiE 2009
Unambiguous functions in logarithmic space - CiE 2009Unambiguous functions in logarithmic space - CiE 2009
Unambiguous functions in logarithmic space - CiE 2009
 
Games on Posets - CiE 2008
Games on Posets - CiE 2008Games on Posets - CiE 2008
Games on Posets - CiE 2008
 
La, permutations, and the hajós calculus - ICALP 2004
La, permutations, and the hajós calculus - ICALP 2004La, permutations, and the hajós calculus - ICALP 2004
La, permutations, and the hajós calculus - ICALP 2004
 
Fair ranking in competitive bidding procurement: a case analysis
Fair ranking in competitive bidding procurement: a case analysisFair ranking in competitive bidding procurement: a case analysis
Fair ranking in competitive bidding procurement: a case analysis
 
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
 
Forced repetitions over alphabet lists
Forced repetitions over alphabet listsForced repetitions over alphabet lists
Forced repetitions over alphabet lists
 
How Safe is your Data?
How Safe is your Data?How Safe is your Data?
How Safe is your Data?
 
Circuit Complexity of Shuffle - IWOCA 2013
Circuit Complexity of Shuffle - IWOCA 2013Circuit Complexity of Shuffle - IWOCA 2013
Circuit Complexity of Shuffle - IWOCA 2013
 
An algorithmic view of Computer Science
An algorithmic view of Computer ScienceAn algorithmic view of Computer Science
An algorithmic view of Computer Science
 
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005Feasible proofs of matrix identities with csanky's algorithm - CSL 2005
Feasible proofs of matrix identities with csanky's algorithm - CSL 2005
 

Similar to Feasible Combinatorial Matrix Theory - LICS2013 presentation

Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Varad Meru
 
Bag of Pursuits and Neural Gas for Improved Sparse Codin
Bag of Pursuits and Neural Gas for Improved Sparse CodinBag of Pursuits and Neural Gas for Improved Sparse Codin
Bag of Pursuits and Neural Gas for Improved Sparse CodinKarlos Svoboda
 
p_enclosure_presentation_long
p_enclosure_presentation_longp_enclosure_presentation_long
p_enclosure_presentation_longTommi Brander
 
2014 vulnerability assesment of spatial network - models and solutions
2014   vulnerability assesment of spatial network - models and solutions2014   vulnerability assesment of spatial network - models and solutions
2014 vulnerability assesment of spatial network - models and solutionsFrancisco Pérez
 
Simulated annealing for MMR-Path
Simulated annealing for MMR-PathSimulated annealing for MMR-Path
Simulated annealing for MMR-PathFrancisco Pérez
 
A Comparison Of Methods For Solving MAX-SAT Problems
A Comparison Of Methods For Solving MAX-SAT ProblemsA Comparison Of Methods For Solving MAX-SAT Problems
A Comparison Of Methods For Solving MAX-SAT ProblemsKarla Adamson
 
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Varad Meru
 
Metody logiczne w analizie danych
Metody logiczne w analizie danych Metody logiczne w analizie danych
Metody logiczne w analizie danych Data Science Warsaw
 
slides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadslides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadFarhad Gholami
 
Resource theory of asymmetric distinguishability
Resource theory of asymmetric distinguishabilityResource theory of asymmetric distinguishability
Resource theory of asymmetric distinguishabilityMark Wilde
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1aGaston Liberman
 
Matrix Completion Presentation
Matrix Completion PresentationMatrix Completion Presentation
Matrix Completion PresentationMichael Hankin
 
Iterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderIterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderCSCJournals
 
Iterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderIterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderCSCJournals
 

Similar to Feasible Combinatorial Matrix Theory - LICS2013 presentation (20)

kcde
kcdekcde
kcde
 
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
 
Bag of Pursuits and Neural Gas for Improved Sparse Codin
Bag of Pursuits and Neural Gas for Improved Sparse CodinBag of Pursuits and Neural Gas for Improved Sparse Codin
Bag of Pursuits and Neural Gas for Improved Sparse Codin
 
p_enclosure_presentation_long
p_enclosure_presentation_longp_enclosure_presentation_long
p_enclosure_presentation_long
 
2014 vulnerability assesment of spatial network - models and solutions
2014   vulnerability assesment of spatial network - models and solutions2014   vulnerability assesment of spatial network - models and solutions
2014 vulnerability assesment of spatial network - models and solutions
 
Simulated annealing for MMR-Path
Simulated annealing for MMR-PathSimulated annealing for MMR-Path
Simulated annealing for MMR-Path
 
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
 
Least Squares method
Least Squares methodLeast Squares method
Least Squares method
 
A Comparison Of Methods For Solving MAX-SAT Problems
A Comparison Of Methods For Solving MAX-SAT ProblemsA Comparison Of Methods For Solving MAX-SAT Problems
A Comparison Of Methods For Solving MAX-SAT Problems
 
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passin...
 
UNIT III.pptx
UNIT III.pptxUNIT III.pptx
UNIT III.pptx
 
Modeling the dynamics of molecular concentration during the diffusion procedure
Modeling the dynamics of molecular concentration during the  diffusion procedureModeling the dynamics of molecular concentration during the  diffusion procedure
Modeling the dynamics of molecular concentration during the diffusion procedure
 
Metody logiczne w analizie danych
Metody logiczne w analizie danych Metody logiczne w analizie danych
Metody logiczne w analizie danych
 
slides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadslides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhad
 
Resource theory of asymmetric distinguishability
Resource theory of asymmetric distinguishabilityResource theory of asymmetric distinguishability
Resource theory of asymmetric distinguishability
 
Pmath 351 note
Pmath 351 notePmath 351 note
Pmath 351 note
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1a
 
Matrix Completion Presentation
Matrix Completion PresentationMatrix Completion Presentation
Matrix Completion Presentation
 
Iterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderIterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO Decoder
 
Iterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO DecoderIterative Soft Decision Based Complex K-best MIMO Decoder
Iterative Soft Decision Based Complex K-best MIMO Decoder
 

Recently uploaded

USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 

Recently uploaded (20)

USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Feasible Combinatorial Matrix Theory - LICS2013 presentation

  • 1. Feasible Combinatorial Matrix Theory Ariel G. Fern´andez, Michael Soltys. fernanag@mcmaster.ca, soltys@mcmaster.ca Department of Computing and Software McMaster University Hamilton, Ontario, Canada
  • 2. Outline Introduction KMM connects max matching with min vertex core Language to Formalize Min-Max Reasoning Main Results LA with ΣB 1 -Ind. proves KMM LA Equivalence: K¨onig, Menger, Hall, Dilworth Related Theorems Menger’s Theorem, Hall’s Theorem, and Dilworh’s Theorem Future Work 1/12
  • 3. KMM connects max matching with min vertex core 1 2 3 4 5 1’ 2’ 3’ 4’ V1 V2 2/12
  • 4. KMM connects max matching with min vertex core 1 2 3 4 5 1’ 2’ 3’ 4’ V1 V2 M is a Matching denoted by snaked lines. C is a Vertex cover denoted by square nodes. Here M is a Maximum Matching and V is a Minimum Vertex Cover. So by K¨onig’s Mini-Max Theorem, |M| = |C|. 2/12
  • 5. Language to Formalize Min-Max Reasoning LA is (Developed by Cook and Soltys.) Part of Cook’s program of Reverse Mathematics. Three sorts: indices ring elements matrices LA formalize linear algebra (Matrix Algebra). LA over Z (though all matrices are 0-1 matrices.) Since we want to count the number of 1s in A by ΣA. 3/12
  • 6. LA with ΣB 1 -Induction LA (i.e., LA with ΣB 0 -Induction), proves all the ring properties of matrices (eg.,(AB)C = A(BC)), and LA over Z translates into TC0 -Frege ([Cook-Soltys’04]). Bounded Matrix Quantifiers: We let (∃A ≤ n)α stands for (∃A)[|A| ≤ n ∧ α], and (∀A ≤ n)α stands for (∀A)[|A| ≤ n → α]. LA with ΣB 1 -Induction correspond to polytime reasoning and proves standard properties of the determinant, and translate into extended Frege. 4/12
  • 7. Main Results Theorem 1: LA with ΣB 1 -Induction KMM. Theorem 2: LA proves the equivalence of fundamental theorems: K¨onig Mini-Max Menger’s Connectivity Hall’s System of Distinct Representatives Dilworth’s Decomposition 5/12
  • 8. LA with ΣB 1 -Ind. proves KMM Diagonal Property ∗ ∗ 0 ... 00 0 0 . . .1 Either Aii = 1 or (∀j ≥ i)[Aij = 0 ∧ Aji = 0]. Claim Given any matrix A, ∃LA proves that there exist permutation matrices P, Q such that PAQ has the diagonal property. 6/12
  • 9. LA Equivalence: K¨onig, Menger, Hall, Dilworth Theorem : LA proves the equivalence of fundamental theorems: K¨onig Mini-Max Menger’s Connectivity Hall’s System of Distinct Representatives Dilworth’s Decomposition 7/12
  • 10. Menger’s Connectivity Theorem – Example y a d ex b c f x y
  • 11. Menger’s Connectivity Theorem – Example y a d ex b c f x y 8/12
  • 12. Menger’s Connectivity Theorem – Example y a d ex b c f x y 8/12
  • 13. Menger’s Connectivity Theorem – Example y a d ex b c f x y 8/12
  • 14. Menger’s Connectivity Theorem – Example y a d ex b c f x y 8/12
  • 15. Hall’s SDR Theorem - Example Let X = {1, 2, 3, 4, 5} be the 5-set of integers. Let S = {S1, S2, S3, S4} be a family of X. For instance, S1 = {2, 5}, S2 = {2, 5}, S3 = {1, 2, 3, 4}, S4 = {1, 2, 5}. Then D := (2, 5, 3, 1) is an SDR for (S1, S2, S3, S4). Now, if we replace S4 by S4 = {2, 5}, then the subsets no longer have an SDR. For S1 ∪ S2 ∪ S4 is a 2-set, and three elements are required to represent S1, S2, S4 9/12
  • 16. Dilworth’s Decomposition Theorem - Example {} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} Let P = (⊂, 2X ), i.e., all subsets of X with |X| = n with set inclusion, x < y ⇐⇒ x ⊂ y. (A) Suppose that the largest chain in P has size . Then P can be partitioned into antichains. We have 4-antichains [{}] , [{1}, {2}, {3}] , [{1, 2}, {1, 3}, {2, 3}] , and [{1, 2, 3}] . (B) Suppose that the largest antichain in P has size . Then P can be partitioned into disjoint chains. We have [{} ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3}] , [{2} ⊂ {2, 3}] , and [{3} ⊂ {1, 3}]. 10/12
  • 17. Examples of LA formalization For example, concepts necessary to state KMM in LLA: Cover(A, α) := ∀i, j ≤ r(A)(A(i, j) = 1 → α(1, i) = 1 ∨ α(2, j) = 1) Select(A, β) := ∀i, j ≤ r(A)((β(i, j) = 1 → A(i, j) = 1) ∧ ∀k ≤ r(A)(β(i, j) = 1 → β(i, k) = 0 ∧ β(k, j) = 0)) 11/12
  • 18. Future Work Can LA-Theory prove KMM? What is the relationship between KMM and PHP? (Eg. LA ∪ PHP KMM?) Can LA ∪ KMM prove Hard Matrix Identities? We would like to know whether LA ∪ KMM can prove hard matrix identities, such as AB = I → BA = I. Of course, we already know from [TZ11] that (non-uniform) NC2 -Frege is sufficient to prove AB = I → BA = I, and from [Sol06] we know that ∃LA can prove them also. What about ∞-KMM? 12/12